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SCOPE OF THE WORK 

Reliance on CPU for communication limits scaling on GPU clusters 

NVSHMEM provides GPU kernel-side OpenSHMEM API  

NVLink is a  high-bandwidth memory-like fabric between GPUs 

Effectiveness of NVSHMEM over NVLink with Breadth First Search 

CPU-initiated MPI vs GPU-initiated SHMEM in a particular implementation of BFS 
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AGENDA 

GPU Programming Models: MPI and SHMEM  

NVSHMEM Overview 

DGX and NVLink 

MPI+CUDA implementation of BFS  

SHMEM implementation of BFS 

Performance Evaluation  

Conclusion and Future Work 
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GPU CLUSTER PROGRAMMING 
Offload model 

    Compute on GPU 

    Communication from CPU   

  

Synchronization at boundaries 

 

Overheads on GPU Clusters 

 Offload latencies  

 Synchronization overheads 

 

Limits strong scaling 

 

     More CPU means more power 

 

void 2dstencil (u, v, …) 

{ 

   for (timestep = 0; …) {  

      interior_compute_kernel <<<…>>> (…) 

      pack_kernel <<<…>>> (…) 

      cudaStreamSynchronize(…) 

      MPI_Irecv(…)    

      MPI_Isend(…) 

      MPI_Waitall(…) 

     unpack_kernel <<<…>>> (…) 

     boundary_compute_kernel <<<…>>> (…) 

     … 

   } 

} 
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GPU-CENTRIC COMMUNICATION 

GPU capabilities  
Warp scheduling to hide latencies to global memory 
Implicit coalescing of loads/stores to achieve efficiency 

 
CUDA helps to program to these 
 
Should also benefit when accessing data over the network 
 
Direct accesses to remote memory simplifies programming  
 
Achieving efficiency while making it easier to program  
 
Continuous fine-grained accesses smooths traffic over the network 
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GPU GLOBAL ADDRESS SPACE 
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COMMUNICATION FROM CUDA KERNELS 

Long running CUDA kernels  
 

Communication within parallelism  

 

 
__global__ void 2dstencil (u, v, sync, …)  
{ 
    for(timestep = 0; …) {          
         if (i+1 > nx) {  
               v[i+1] = shmem_float_g (v[1], rightpe); 
         } 
         if (i-1 < 1) {  
               v[i-1] = shmem_float_g (v[nx], leftpe); 
         } 
      
        u[i] = (u[i] + (v[i+1] + v[i-1] . . .  
 
        if (i < 2) { 
             shmem_int_p (sync + i, 1, peers[i]);  
             shmem_quiet(); 
             shmem_wait_until (sync + i, EQ, 1); 
        }      
       //intra-kernel sync 
       …      
    } 
} 

void 2dstencil (u, v, …) 

{ 

     stencil_kernel <<<…>>> (…) 

} 
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Implementation of OpenSHMEM Specification (1.3) 
 

Symmetric heap on GPU memory  
 

Implements multi-threading support as being discussed in PR #43 

 

 

 

 

 

 

 

 

 

 
 

Extensions for GPUs 

 CUDA stream-based SHMEM communication 

 Thread cooperative SHMEM communication  
 

Expected availability: Q4 2017 (single OS Multi-GPU nodes: NVLink, PCIe, QPI)  
 

 

NVSHMEM 

HOST/GPU HOST ONLY 

Library setup, exit and query 

Memory management 

shmem_ptr 

Remote memory access 

Atomic memory operations 

Collectives 

Point-to-point synchronization 

Memory ordering  

Locking routines 
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DGX-1 ARCHITECTURE 
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Inter-GPU Copies – Single Process 

GPU 0 

C
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U

 

GPU 1 

cudaSetDevice(0); 
 
cudaMalloc(&buf0, size) 
 
cudaSetDevice(1); 
 
cudaMalloc(&buf1, size) 
 
---------- 
---------- 
 
cudaMemcpy (buf0, buf1, size, cudaMemcpyDefault ) 

Unified Virtual Addressing available since CUDA 4.0 (2011) 
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GPUDirect P2P: by-passing CPU memory 

cudaSetDevice(0); 
 
cudaMalloc(&buf0, size); 
 
cudaCanAccessPeer (&access, 0, 1); 
 
assert(access == 1); 
 
cudaEnablePeerAccess (1, 0); 
 
cudaSetDevice(1); 
 
cudaMalloc(&buf1, size); 
 
---------- 
---------- 
 
cudaSetDevice (0);  
 
cudaMemcpy (buf0, buf1, size, cudaMemcpyDefault); 

cudaDeviceCanAccessPeer(int *access, int device, int peerdevice); 
cudaEnablePeerAccess(int peerDevice, unsigned int flags)  

GPU 0 

C
P
U

 

GPU 1 

GPU 0 

C
P
U

 

GPU 1 

Can also access (LD/ST) the peer GPU memory from inside a CUDA kernel 

PCIe P2P 
(copy/LD/ST) 

NVLink 
(copy/LD/ST

/atomics) 
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cudaIpcGetMemHandle(), cudaIpcOpenMemHandle() 
& cudaDeviceEnablePeerAccess()  
Using GPU memory from another process 

Physical GPU Memory 
Existing allocation 

Get handle and send 
to other process 

Opening handle creates 
mapping in receiving 

process 

H 

GPU-0 VAs for Process 1 

GPU-1 VAs for Process 2 

GPU-0 

GPU-1 

Available for access by 
another process AND from 
a second GPU use peering  
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NVLINK1 W/ PASCAL 
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LD/ST - Random Access 
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1.48x 
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10.44x 

 
• GPU memory model is relaxed and scoped 

 
• Same memory model works within/across GPUs 

 
 



14  

BREADTH FIRST SEARCH (BFS)  

 
Baseline: an MPI-based multi-GPU implementation of BFS by M.Bisson et. al. 
 

Has been shown to scale to thousands of GPUs on the Tsubame supercomputer 
 

Loosely follows the Graph 500 specification 
  

 R-MAT generator, mean performance over 64 BFS operations 
  

 Uses 32-bit vertices instead of required 48-bit representation 
  

Uses a parallel level-synchronous algorithm 
  

 Frontier: list of vertices from which traversal starts in a give level 
 Expand: traverse graph to find un-visited neighbors of frontier vertices  
  

 Exchange: exchange list of newly found vertices  
  

 Append: remove redundancy and build the frontier for next level   
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DATA PARTITIONING 
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 Process grid: R rows x C columns   

Adjacency list of a vertex is distributed along process column 

Destination vertex of each edge is in the same process row 
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BFS USING MPI 

frontier list at one processor column is populated with the seed vertex 

 
while (frontier not empty)  

{ 

    Expand: local expansion 

    Horizontal Exchange: Alltoall exchange newly discovered vertices (happens only along grid rows) 

    Append: build new frontier vertex list 

    Vertical exchange: Allgather frontier list along grid columns (happens only along columns) 

    Convergence check: Allreduce frontier list size among all processors 

} 
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EXCHANGE USING MPI 

Vertex lists are exchanged in two forms:  

 Using a vertex list (one integer per vertex)  

       Using a bitmap (one bit per vertex) 

 

Format is statically picked based on the level of traversal 

 bitmap when number of discovered vertices is expected to be large  

 vertex list when number of discovered vertices is expected to be large  

   

Communication implemented using non-blocking MPI sends and receives 

 

Enhanced the base version to using CUDA-aware MPI 

 internally uses CUDA IPC/P2P to take advantage of direct PCIe or NVLink connections  
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BFS USING NVSHMEM 

Fuse communication into CUDA kernels 
 expand <- exchange of newly discovered vertices 
       append <- exchange frontier vertices 
 
while (frontier not empty)  

{ 

    Expand on GPU: local expansion 

    Append on GPU: build new frontier vertex list 

    Convergence check on CPU: Allreduce frontier list size among all processors 

} 

 

          atomicOr(sbuf + r[k]/BITS(msk), m[k]); 

            int peer = r[k] / drow_bl; 

            uint32_t off = disp + r[k]%drow_bl; 

            q[k] = shmem_int_or ((int *)(msk + off/BITS(msk)), m[k], peer); 

gets rid of the MPI exchange code on the host  
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WORKAROUND FOR PCIE 

GPU-GPU atomics are not supported over PCIE 
 
We take advantage of fact that 32-bit writes are atomic  
 
Vertex list is represented as integers, marked with shmem_int_p 
 
Higher processing overhead as the vertex map is 32x larger  
 
Provides a common version to compare behavior over PCIe and NVLink  
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PERFORMANCE WITH PUTS 
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FUTURE WORK 

Fairer comparison by removing tracking of predecessor information  
 
Hybrid vertex list/bitmap design like in the case of MPI  
 
Can offload multiple levels of BFS using stream-based collectives in NVSHMEM 
 
Possibility of kernel fusion, using kernel-side collectives in NVSHMEM 
 
Evaluate the use of IB to extend NVSHEM across multiple nodes 
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CONCLUSION 

NVLink provides a high-bandwidth memory-like fabric between GPUS 
 
NVSHMEM provides GPU-side communication API based on OpenSHMEM 
 
We presented a study of using GPU-initiated communication in BFS  
 
Benefits from reduced overheads in strong scaling cases, compared to using MPI 
 
Tradeoff with efficient network utilization for weak scaling 
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